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Seasonal Analysis of Death Counts in the
United States

4.1 Introduction

Demographers — as probably most other empirical researchers — prefer work-
ing with rates rather than with pure counts: growth rates, birth rates, death
rates, transition rates, etc. The advantage is obvious: While count models
rely only on the actual event of interest, rate models take also the units into
account which are exposed to this event (e.g. person-years lived). Unfortu-
nately, exposures are often not available. For example in the case of historical
demography, the number of deaths by age and sex is regularly available. What
is frequently absent, however, is the number of people who were alive (and
therefore exposed to the risk of dying) in that particular age and sex. Also
for the analysis of seasonal mortality, we are often faced with the situation to
have death counts available but no exposures.

One way to avoid this problem is to estimate the exposures. Donaldson
and Keatinge [77], for example, obtained the daily population in their study
of winter excess mortality in southeast England “by linear interextrapolation
from the 1981 and 1991 censuses”. Also Kunst et al. [209] used linear interpo-
lation for population estimates in their time-series analysis on the influence of
outdoor air temperature on mortality in The Netherlands. Another solution in
the case of absent exposures is to use only events. For those count models, it
is not necessary to estimate any exposures. Typically, those studies assume an
underlying Poisson process in the data like the analyses of seasonal variation
in mortality in Scotland and in The Netherlands [121, 235].

The latter approach is clearly less desirable if exact exposures are available.
If this is not the case, it is open to discussion whether an estimated population
at risk is more favorable than pure counts. Especially in the case of season-
ality studies, there are many problems associated with estimating seasonal
populations (=exposures), as pointed out by Happel and Hogan [140].1

1 It should be noted that Neale [271] already mentioned the problem of estimating
monthly population counts in 1923.
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This chapter presents an analysis of seasonality based on pure death counts
in the United States from 1959 to 1998. Vaupel [381] once remarked that de-
mographers should use the best possible data to study a certain phenomenon.
Working with death counts as the best possible data seems to be contra-
dictory at first sight as Scandinavian population registers, for example, offer
exact event counts and precise exposure times. The quality of the data is,
however, only one side of the coin of best data: it is equally important to take
care of the content of the data. Small, egalitarian countries such as Denmark
and Sweden with one common climate are less desirable than the US when
one’s aim is to study the impact of social factors on seasonal mortality. Thus,
the “Multiple Cause of Death”-Public-Use-Files we used for the United States
provide such a data-source: every individual death since 1959 is publicly avail-
able, broken down by various characteristics. The wealth of having almost 80
Mio. individual records available makes it possible to study selected causes of
death for the whole period since the late 1950s across a wide age-range. More
details of the data are explained in Section 4.3.

Besides the sheer amount of information, the lack of research on seasonal
mortality in the United States during the last 25 years has been another
reason to choose this country. Studies on seasonal mortality focused on Euro-
pean countries during the last 25 years. For the US, this topic has not been
investigated since the late 1970s [231, 316, 319, 324, 325]. The only exception
being regional studies (e.g. 199, 285) and one study on deaths from coronary
heart disease by Seretakis et al. [340]. Solely, Feinstein [102] examined over-
all mortality in the United States recently. One important finding was that
the “seasonalities of deaths have been increasing over the years [. . . ] for older
people and decreasing for younger people”[102, p. 485].

This was quite surprising. With the improved chances of people attaining
high ages since the 1970s [378], we would have expected that elderly people
were also better able to withstand environmental stress (i.e. cold in winter)
with improvements in general living conditions.

4.2 Research Questions

There is ambivalent evidence for differences in seasonality of mortality for
women and men. Some studies surprisingly found no differences for seasonality
for this main determinant of mortality while others discovered remarkable
differences between women and men in their seasonal mortality patterns with
men showing larger seasonal fluctuations than women [98, 121, 262, 302, 419].
Therefore we decided to conduct all subsequent analyses for women and men
separately.

• Period & Cause of Death. Do we find support for Feinstein’s result
of increasing seasonality for the elderly over time? Is it possible to detect
different patterns for all cause mortality and selected groups of causes of
death?
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• Age & Cause. Previous studies have shown an increase in seasonality
with age for various countries [251, 268, 302]. Can these findings be repli-
cated in the US for all cause mortality and for selected causes of death?

• Region & Period. It is argued in the literature that socio-economic
progress in general and the widespread use of central heating and air con-
ditioning decreased seasonal fluctuations in deaths [188, 251]. We expect
decreasing seasonality over time. However, regions with a high differen-
tial between winter and summer temperatures should have benefited more
than regions with a moderate climate.

• Region & Age. How important is the region where you are living for
the development of seasonal mortality? Is an assumed increase with age in
seasonality of deaths larger in regions where one faces higher environmental
stress than in other regions?

• Education, Age & Cause of Death. The question how socio-economic
status — a major general mortality determinant [374] — affects seasonality
in deaths is still unanswered. Few studies argue that lower social groups
are disadvantaged [e.g. 79, 147]; most others found no social gradient [214,
215, 342]. Our analysis focuses on the question whether people with higher
education face lower seasonality in deaths.

• Marital Status & Age. Another major factor in mortality research is
marital status, usually showing that married people have lowest (overall)
mortality. Typically, married people have lower mortality risks throughout
their life courses than single, widowed or divorced persons. Men’s differ-
ences are larger than women’s [129, 163, 223]. These differential mortality
risks are usually explained either by a protection effect or by a selection
effect [125, 223]. In the case of seasonal mortality, a protection effect can
be imagined in several directions: people who are married can pool their
financial resources and have therefore not only better access to medical
care, but can also afford a higher quality of housing which is a major
determinant in avoiding cold-related mortality as previous studies have
shown [e.g. 245]. While this causal pathway could be also captured by
education as a proxy for socio-economic status, marital status may also
work in another direction: in comparison to single, widowed and divorced
people, married women and men are most likely not living alone. In the
case of an emergency, the spouse is usually present to organize help. Nev-
ertheless, no research has been published so far on the potential impact of
marital status on seasonal mortality.

4.3 Data

Our analysis uses the “Multiple Cause of Death”-Public-Use-Files for the
years 1959–1998 published by the “US Centers for Disease Control and
Prevention” (CDC). We downloaded the data from 1968–1998 from the
“Inter-university Consortium for Political and Social Research” (ICPSR) at
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http://www.icpsr.umich.edu/. Data for previous years have been kindly
provided by the “Program on Population, Policy and Aging” at the Terry
Sanford Institute for Public Policy at Duke University, NC.

We included only deaths at ages 50 and higher, because we wanted to focus
on adult mortality. At younger adult ages, the number of deaths in certain
age-groups for selected causes of deaths are too few to obtain robust estimates.
The data consist of more than 77 Mio. individual death records. Each of the
records contains information on the sex of the individual, month and year of
death, age at death. For our analysis, we also extracted information on the
cause of death, state of residence and state of occurence, and several social
variables. Figure 4.1 gives an overview on the availability of these variables
in our data over time. The following subsections explain how we divided and
coded the data for our analysis.

4.3.1 Cause of Death

Table 4.1 outlines which ICD codes we used to extract the information for our
selected causes of death. ICD is the abbreviation for “International Statisti-
cal Classification of Diseases and Related Health Problems” from the World
Health Organization (WHO). This coding scheme gives mandatory instruc-
tions how the cause of death has to be coded. During its existence, the ICD
underwent several revisions. While ICD-10 is the current revision, ICD-7,
ICD-8, and ICD-9 were in use in the United States during our observation
period. ICD-7 was used until 1967; between 1968 and 1978 ICD-8 was the
valid coding scheme; from 1979 until 1998 deaths in the United States were
coded according to ICD-9.

Table 4.2 gives an overview about the actual number of deaths for each
cause. In addition, we have given information about the contribution of each
cause to all deaths for the whole time-series, for the first five years, and the
last five years to highlight vaguely any time trends. In the column “Win-
ter/Summer Ratio” we divided winter deaths (January–March) by summer
deaths (July–September) to find out whether our selected causes show a con-
siderable seasonal difference in mortality. We did not give an extra-column
for a test for seasonality. All causes of death presented here have passed He-
witt’s nonparametric test for seasonality with significant values (ρ = 0.0130)
[150, 395]. This indicates that all causes examined show a pattern where the
six highest values of a year and the six lowest values of a year are not mixed
but appear in separate halves of the year. Most people died of cardiovascu-
lar diseases during our observation period, with almost 32 Mio. deaths. In
conjunction with neoplasms, cerebrovascular and respiratory diseases almost
80% of deaths are covered. Despite the regularities in the ordering of the
months (i.e. significant results for Hewitt’s test), the extent of seasonality dif-
fers remarkably: On average (=All Causes), the number of summer deaths is
exceeded by winter deaths by roughly 16%. Neoplasms, not surprisingly, show
relatively small fluctuations (1.6%), whereas respiratory diseases have 62%
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Fig. 4.1. Availability of Variables in Our Data-Set over Time

more deaths in winter than in summer. The leader in that respect is influenza
with a value of 27.762 (i.e. almost an excess of 2,700%).

Although the most remarkable changes in the cause of death structure over
time are usually associated with the “epidemiological transition” [281] and the
vanishing of tuberculosis [402] in the 20thcentury, the proportions of the lead-
ing causes of death have not remained constant during recent decades either.
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Table 4.1. Coding Scheme for Selected Causes of Death

Cause of Death ICD-Codes
ICD-7 ICD-8 ICD-9

Cardiovascular Diseases 400–468 390–429 390–429
440–459

440–458 557
IHD — 410–414 410–414

Neoplasms 140–239 140–239 140–239
Cerebrovascular Diseases 330–334 430–438 430–438
Respiratory Diseases 240; 241 460–519 460–519

470–527
Asthma 241 493 493
Influenza 480–483 470-474 487
Pneumonia 490–493 480–485 480–483

486
Bronchitits 500–502 490–491 490–491

Diabetes Mellitus 260 250 250
Infect. & Parasit. Dis. 001–138 001–136 001–139

Tuberculosis 001-019 010–019 010–019
Liver Cirrhosis 581 571 571

With the exception of IHD (1968–98), all causes of death
are covered for the period 1959–1998.

Figure 4.2 gives an overview of how seven major causes have changed during
our observation period. For “both sexes”, “women”, and “men” there are two
columns each, showing the cause-of-death spectrum for the first (1959–63)
and last (1994–1998) five years, respectively, covered in our dataset. Cardio-
vascular diseases remain the leading cause of death (see also Table 4.2) —
although the contribution shrunk for both sexes from 45% to 35%. Similarly,
also cerebrovascular diseases lost in relevance between the late 1950s and the
late 1990s. Almost 12% of all people died from that group of diseases between
1959–63, whereas in the years 1994–98 only 7% died of it. Net “winners” in
this respect are mainly malignant neoplasms (17% → 22%) and respiratory
diseases (7% → 9%). Diabetes Mellitus and “Infectious and Parasitic Dis-
eases” also gained in relevance, however their overall share is comparatively
small (Diabetes Mellitus: 1.84% → 2.66%; Infectious and Parasitic Diseases:
1.24% → 2.80%). It is interesting to note that influenza and hypothermia —
two causes of death which are often associated with winter excess mortality
— make up only a negligible part of all deaths (influenza: 0.04%; hypother-
mia: 0.02%). These small proportions, however, might mask the real impact
of these diseases. For example, it is well-known that “[i]nfluenza epidemics
cause deaths additional to those registered as being due to influenza, such as
deaths caused by arterial thrombosis”[78, p. 90].
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Fig. 4.2. Changes in the Cause of Death Composition of Adult Deaths in the United
States Between 1959–63 and 1994–98 by Sex

4.3.2 Education

The variable education has been included since 1989. The original data are
given as a two-digit code indicating years of education. We followed the re-
coding advice in the coding manual with one exception: we included two
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additional categories which indicate whether a person has finished elemen-
tary school (8 years of education), dropped out of elementary school (less
than 8 years) or has received no formal education at all (0 years). All other
categories remained the same and have been given meaningful labels. The
categories, their labels and the corresponding numbers of death broken down
by sex are given in Table 4.3.

Table 4.3. Number of Deaths Broken Down by Sex and Level of Education

Code Meaning Deaths
Women Men

Counts % Counts %

0 No formal education 105,462 1.0 108,348 1.0
1 Elementary School Dropout 846,138 7.9 975,483 8.7
2 Finished Elementary School 1,390,687 12.9 1,229,727 10.9
3 High School Dropout 1,197,240 11.1 1,229,727 10.9
4 Finished High School 3,746,633 34.8 3,594,343 31.9
5 College Attendance 1,120,953 10.4 1,147,500 10.2
6 College Degree or more 857,895 8.0 1,264,765 11.2
7 Not Stated 1,502,673 14.0 1,549,632 13.8

Σ 10,767,681 100.0 11,249,981 100.0

Finishing high school was the most common level of education achieved
by both sexes (women: 34.8%; men: 31.9%). Although our decomposition in
7 categories is relatively detailed, enough people remain even in the smallest
group “no formal education” with more than 100,000 deaths for each sex.

4.3.3 Marital Status

Data on marital status are available since 1979. To make comparable analy-
ses on the impact of social factors by age, we restricted our analysis to the
years 1989–98, the same period as for education. In the official codebooks six
categories are given which have been converted to five: never married / sin-
gle, married, widowed, and divorced remained the same. The category “not
stated on certificate” has been merged together with “not stated”. This resid-
ual category comprises less than one percent of each sex (♀: 0.3%, ♂: 0.7%). In
contrast with the variable “education”, the cell frequencies differ remarkably
between women and men. Most notable are the differences for married and
widowed women and men. This is the result of the higher life expectancy of
women. It is more likely for women at the end of their lives to be widowed
than for men.
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Table 4.4. Number of Deaths Broken Down by Sex and Marital Status

Code Marital Status Deaths
Women Men

Counts % Counts %

1 Never Married, Single 935,504 8.7 1,536,393 13.7
2 Married 2,820,570 26.2 6,487,584 57.7
3 Widowed 6,102,184 56.7 2,011,515 17.9
4 Divorced 879,450 8.2 1,136,594 10.1
9 Not Stated 29,973 0.3 77,895 0.7

Σ 10,767,681 100.0 11,249,981 100.0

4.3.4 Region

Various studies have shown that countries with relatively harsh climatic condi-
tions and cold winters (e.g. Canada, Sweden) show less winter excess mortality
than countries with warm or moderate climate such as Portugal, Spain or the
UK [135, 147, 252]. It is argued that people in colder regions are better able
to protect themselves against adverse environmental conditions. One disad-
vantage of previous studies was that these results were based on cross country
analyses. The data from the United States provide an excellent framework
to analyze seasonal mortality in different climatic regions within one country.
For our regional analysis we followed the state groupings given in the orig-
inal coding manuals which resemble different climatic regions. Our slightly
adapted division of states is presented in Table 4.5. In its original version the
states Alaska and Hawaii belonged to the group “Pacific”. In our analysis,
these two states have been examined separately. Figure 4.3 makes it easier to
locate the coding of the regions geographically. This classification resembles
in most cases the “Köppen Climate Classification”. In some cases, however,
the regional classification does not describe states with similar meteorological
conditions. For example, Arizona and Montana in the “Mountain-Group” dif-
fer considerably in their climate. Special care should therefore be taken for the
interpretation if estimations from the “Mountain” and from the “Midwest”
show exotic results.

We refer to the actual “state of occurrence”, i.e. the state/region where the
death has happened. “State of residence” is given in the data as well. In our
analyses by region we only included those deaths where state of residence and
state of occurrence were in the same regional division excluding the impact of
“snowbirds” [140].2 The loss of data is relatively minor. More than 98% of all
deaths happened in the same region as the place of residence of the deceased.

2 People who are seasonally migrating — usually to warmer regions during the cold
season — are sometimes labeled “snowbirds” in the literature.
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Table 4.5. Coding of Regions by State

Code Region States

1 New England Connecticut Maine Massachusetts
New Hampshire Rhode Island Vermont

2 Middle Atlantic New Jersey New York Pennsylvania

3 Midwest Illinois Indiana Iowa
Kansas Michigan Minnesota
Missouri Nebraska North Dakota
Ohio South Dakota Wisconsin

4 South Atlantic Delaware D.C. Florida
Georgia Maryland North Carolina
South Carolina Virginia West Virginia

5 South Central Alabama Arkansas Kentucky
Louisiana Mississippi Oklahoma
Tennessee Texas

6 Mountain Arizona Colorado Idaho
Montana Nevada New Mexico
Utah Wyoming

7 Pacific California Oregon Washington

8 Alaska Alaska

9 Hawaii Hawaii

4.3.5 Known Data Problems

Generally speaking, the “US Multiple Cause of Death”-Public-Use-Files pro-
vide a very good basis for research. Nevertheless, there are some real and some
potential pitfalls in the data which will be briefly outlined here as well as the
approaches used to tackle them.

ICD Revisions: During our observation period, three revisions of the ICD
were in practice in the US (ICD-7, ICD-8, ICD-9). If one is not careful,
the introduction of a new revision is prone to result in sudden shifts in the
number of deaths. An illustrative example is Asthma. While ICD-7 was
used, this disease (ICD-7 code: 241) belonged to the group of “Allergic,
endocrine system, metabolic and nutritional diseases” (ICD-7 Codes: 240–
289). Since the eighth revision, Asthma (ICD-8 code: 493) is one of the
“diseases of the respiratory system” (ICD-8: 460–519). Therefore particu-
lar care was taken in reconstructing the time-series. Besides consulting the
original coding schemes, the following procedures have been undertaken
to obtain time-series with a maximum of quality:
• The first step was to plot the data to discover any breaks or other-

wise strangely behaving characteristics in the data. As pointed out by
Cleveland: “Data display is critical to data analysis. Graphs allow us
to explore data to see the overall pattern and to see detailed behaviour;



94 4 Seasonal Analysis of Death Counts in the United States

C
od

in
g 

of
 R

eg
io

n
s 

b
y
 S

ta
te

N
ot

 S
ho

w
n:

 A
la

sk
a 

an
d 

H
aw

ai
i

A
L

A
Z

A
R

C
A

C
O

C
T

D
E

F
L

G
A

ID

IL
IN

IA

K
S

K
Y

L
A

M
E

M
D

M
A

M
I

M
N

M
S

M
O

M
T

N
E

N
V

N
H

N
J

N
M

N
Y

N
C

N
D

O
H

O
K

O
R

P
A

R
I

SC

SD

T
N

T
X

U
T

V
T

V
A

W
A

W
V

W
I

W
Y

N
ew

 E
ng

la
nd

M
id

dl
e 

A
tl

an
ti

c
M

id
w

es
t

So
ut

h 
A

tl
an

ti
c

So
ut

h 
C

en
tr

al
M

ou
nt

ai
n

P
ac

ifi
c

Fig. 4.3. Coding of Regions by State
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no other approach can compete in revealing the structure of the data
so thoroughly” [49, p. 5].

• Articles and monographs by Jacques Vallin and France Meslé were con-
sulted (e.g. [259, 375]) who are probably the experts on reconstructing
time series of causes of death.

• Several articles on seasonal mortality give details about the ICD codes
they used for a particular cause [e.g. 98, 209]. This was valuable in
finding “hidden” causes such as asthma mentioned before. The scope
of some articles covered more than one ICD coding scheme. Marshall et
al. [246], for example, give the ICD codes for Coronary Heart Disease
for ICD-8 and ICD-9. Articles like this facilitated the transition from
one ICD revision to the next.

• The statistical software package Stata with its search facilities for ICD
codings (icd9 search and icd9 lookup) allowed to find all possibil-
ities for a certain disease which would otherwise remain undetected.

• Vladimir Shkolnikov, Michael Bubenheim, Sigrid Gellers-Barkmann,
Rembrandt Scholz and Markéta Pechholdová from the “Laboratory
for Demographic Data” at the Max Planck Institute for Demographic
Research in Rostock, Germany, have given valuable advice and sug-
gestions for the reconstruction of the time-series.

The Year 1972: In the year 1972, the Multiple Cause of Death Public Use
File contained only a 50% sample of all deaths. We simply multiplied all
deaths by a factor of 2 to circumvent this problem.

The Years 1987 & 1988: We discovered a sudden drop in death counts by
plotting annual deaths for selected causes for the years 1987 and 1988.
After checking several possibilities as a cause, we found out that only the
first 44 US states (in alphabetical order) had been included for those two
years. Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin,
and Wyoming were missing. We tackled this problem by estimating the
contribution of those states for the year 1986 and 1989 for our respective
analysis (e.g. for sex, age group and educational level). With those two
values we made a linear interpolation of what we would expect for the
years 1987 & 1988. We then multiplied the actual counts for those states
with a factor to obtain the expected number of deaths. Of course, this
does not solve the problem perfectly. Nevertheless, we believe that this
approach yields more satisfactory results than, for example, leaving out
these 7 seven states for all analyses.

4.4 Methods

4.4.1 Model Requirements

The data used in this project have specific features that we need to take into
account when selecting the appropriate models for analysis: the employed
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methods should allow for the count character of the data, without requiring
information on the corresponding exposures. Covering a period of four decades
of remarkable changes in mortality, especially at older ages, the data show
considerable variation in the overall trend, both between different causes of
death but also between different age-groups within the same cause. Thus,
appropriate models have to allow for a flexible specification of these different
trend features. We do not know how the trend and the seasonal component
changes with age and/or over time. Therefore we do not want to impose any
specific parametric model upon our data but rather use data-driven, non-
parametric techniques to estimate our components. Last but not least, we
would like to allow for overdispersion in our models as this “is the norm in
practice and nominal dispersion the exception” [249, p. 124–125]. As shown
in Chapter 3 (Measuring Seasonality), previously existing methods such as
X-11, STL, . . . were unable to extract the exact trend and the exact seasonal
component. Therefore, a new method has been developed which is presented
in the following sections to fulfill these requirements.

4.4.2 The Model

Basic Model Specification

Let t denote the underlying time variable which can represent calendar-time
or age. For matters of convenience in this explanation, t represents calendar-
time. The corresponding number of deaths, corrected for the different lengths
of months, is denoted yt. Our model resembles several characteristics from the
well known field of generalized linear models (GLMs):

Distribution: We assumed that the yt follow a Poisson distribution with pa-
rameter µt. Thus E(yt) = Var(yt) = µt. The Poisson distribution is usually
regarded as “the benchmark model for count data”[41, p. 3].

Link Function: Similar to the setting of GLMs, we relate µt, which are the ex-
pected values of yt to a stimulus matrix via a link function. In our case, the
stimulus matrix is time (or age) and transformations of it. While other link
functions are also possible for Poisson distributed data (for example, the
square-root- or the identity-link, see [389]), we use the canonical/default
choice of a log-link.

The model we are estimating is:3

lnµt = f(t) +
L∑

l=1

{

f1l(t) sin
(

2π l

12
t

)

+ f2l(t) cos
(

2π l

12
t

)}

. (4.1)

3 It should be pointed out that the development of this model is based on an idea of
Dr. Jutta Gampe. The model was implemented in strong collaboration between
her and the author.
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The model is estimated in a similar manner as a GLM. The main deviation
are the parameters which are estimated. In the GLM setting, one parameter
is estimated for each column in the covariate matrix. In our model, these
scalars are replaced by functions. These functions are indicated by f(t), f1l(t)
and f2l(t) in Equation 4.1. The component f(t) describes the varying trend
in the level of counts — due to changing exposures and overall changes in
mortality. The seasonal fluctuations are modeled with the latter two terms
in the equation. In the most simple case with L = 1, two seasonal functions
f11(t) and f21(t) are estimated, resulting in one(!) smoothly changing annual
fluctuation. If L = 2, a semi-annual swing is added. Theoretically, it is possible
to add higher frequencies. It is doubtful it will make sense, though, if L ≥
3. These kinds of models have been termed varying coefficient models by
Hastie and Tibshirani [145]. “In contrast to the GLM, where the regression
coefficients [. . . ] are assumed to be constant, [. . . ] this model accommodates
situations in which one or more of the coefficients are allowed to vary smoothly
(interact) over [. . . ] time or space”[89, p. 760].

Technical Digression: Nonparametric Estimation of Smooth
Trends Varying Coefficients

The following section, until page 101, represents a technical digression.4 The
aim is to show how a function like f(t), f1l(t) or f2l is actually estimated.
The equations in this section (Equations 4.2 and 4.3) are not directly linked
to Equation 4.1.

We assumed that f(t), f1l(t) and f2l are smoothly changing over time (or
age). In a recent paper, Eilers and Marx [89] showed that such models, which
they termed GLASS (Generalized Linear Additive Smooth Structures), can
be estimated via P -Spline smoothing. This technique belongs to the family of
nonparametric smoothers. P -Splines are cubic B-Splines being used as regres-
sion bases with a roughness penalty on their regression coefficients. B-Splines
are made of polynomial pieces connected with knots. Please see Figure 4.4
for a graphical explanation.5 In our case of cubic (degree q = 3) B-Splines,
each B-Spline consists of q+1 = 4 polynomial pieces, as indicated by the four
segments in gray. Each of these polynomial pieces is of degree q = 3. These
polynomial pieces are connected at q = 3 inner knots (t2, t3, t4). At those
knots, the spline function as well as the q − 1 = 2 derivatives of the neighbor-
ing polynomial pieces are continuous. The B-Splines are positive on a domain
of q + 2 = 5 knots. This corresponds in Figure 4.4 to the range from t1 to t5
on the time-axis; everywhere else they are zero [87, 132]. These B-Splines are
bell-shaped and resemble a Gaussian density (=density of a Normal distribu-
tion) [89] without the smoothing problems when regression bases are derived
4 As this approach is novel, it is appropriate to include it in the main text instead

of putting it into the appendix.
5 An extensive discussion of B-Splines (definition, basic properties, . . . is given in

[67].
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from a normal distribution. For example, Gaussian smoothers cannot fit a
straight line as they are not locally defined but from [−∞;∞] resulting in a
“Gaussian ripple” [86]). Such an example is given in Apppendix C on page
183.

Time

t1 t2 t3 t4 t5

0.
0

0.
2

0.
4

0.
6

0.
8

Adapted from Eilers and Marx [86].

Fig. 4.4. Construction of One B-Spline

With these cubic B-Splines as regression bases, we are working in the well
known area of linear regression. The smoothed function is found by minimiz-
ing S in Formula (4.2) via the traditional OLS-fitting. In this equation, y
represents the response vector, B the matrix of covariates (=our B-Splines)
and α their respective regression coefficients.

S = |y − Bα|2 (4.2)

Figure 4.5 shows cubic B-Splines “in action” to smooth artificial data.6

In the lower part of each of the four panels, you see cubic B-Splines which
are close to normal densities as postulated. From left to right and from top
to bottom, the number of B-Splines is increasing. The upper part of each

6 It might be interesting to note that the use of cubic B-Splines is relatively
widespread: For example, the software to design the letters of this text (META-
FONT) used some cubic B-Splines to have smooth and visually appealing shapes
[200].
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panel shows scatterplot of the data and a line. This line is the result of the
smoothing using the cubic B-Splines as regression bases.

One can easily see:

• The higher the number of B-Splines, the closer (and “wigglier”) the
smoothed curve is to the data.

• The lower the number of B-Splines, the smoother is the curve.

The problem one faces now is to find an optimally smoothed curve. If the
curve is too smooth, important characteristics of the data are not caught. If
the curve is too wiggly, the data are overfitted, i.e. we include more complexity
into the model than what is actually desirable. There is no golden standard
for choosing the optimal number of B-Splines and therefore of regression pa-
rameters.7 One could follow a subjective approach to determine the optimal
number of parameters. Although it may sound repulsive to the “objective”
scientist, “[i]t may well be that such a subjective approach is in reality the
most useful one” [132, p. 29]. We are following another approach outlined
by Eilers and Marx [87] as no all-purpose scheme existed to choose the opti-
mal number of splines automatically. The idea is simple: Building on works
of O’Sullivan [283] and Reinsch [306], they proposed to choose a relatively
large number of cubic B-Splines which would normally result in over-fitting.
To prevent this fallacy, a penalty is put on the regression coefficients. More
specifically, a penalizing constant is multiplied with the second derivative of
the regression coefficients.8 The previous optimization problem (in Formula
4.2) changes to Formula 4.3:

S∗ = |y − Bα|2 + λ |D2α|2 , where D2α = ∆2α (4.3)

The iterative procedure to optimize S∗ has been described in [89]. Figure
4.6 shows the impact of how a change in the penalizing parameter λ affects the
smoothness of the curve. In all of the nine panels we see the same artificial data
as in Figure 4.5. The number of cubic B-Splines has been set to a relatively
high level, which would result in over-fitting if the regression coefficients were
not penalized. With a λ-value of 0.01 in the upper-left panel, the weight of
the penalty-term is relatively negligible, resulting in the expected overfitted,
wiggly curve. The higher the λ-values (from left to right and up / down),
the smoother the curve gets. While the upper two graphs are definitely too
close to the data, the last curves are — without any doubt — too smooth

7 As we are actually using regression parameters, the term “non-parametric mod-
els” might be misleading. Eilers and Marx [87] pointed out that “anonymous
models” is preferrable as parameters are estimated. They simply have no scien-
tific interpretation.

8 Eilers and Marx note that the second derivative has been used since “the seminal
work on smoothing splines by Reinsch (1967)”, however, “[t]here is nothing special
about the second derivative; in fact, lower or higher orders might be used as well”
[87, p. 91].
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Fig. 4.5. Smoothing of Artificial Data Using Different Numbers of Cubic B-Splines
as Regression Basis
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with the outcome that important characteristics of the data are not captured.
Ultimately, the smoothed curve tends to become a horizontal line for λ → ∞.

There are several strategies to find the optimal value of λ, for example
cross-validation. We followed the path of Eilers and Marx [87] and used the
Akaike Information Criterion (AIC). Put in a nutshell, the AIC corrects the fit
of the model for the number of parameters involved in the model’s estimation.

P -Splines have several useful properties which makes Eilers and Marx [87,
p. 98] “believe that P -splines come near to being the ideal smoother.” For
example, their foundation in linear regression and the generalized linear model
makes them easy to understand and use. Also the lack of unwanted boundary
effects favors P -Spline smoothers instead of other smoothing methods.9 An
exhaustive comparison of various smoothing methods, their properties and
their respective pros and cons are found in [88].

Overdispersion & Smoothing Parameter Selection

After initial experiments, we discovered that our data violated one of the
key assumptions of the Poisson distribution which we were using; As stated
in Formula 4.4, the mean and the variance are characterized by the same
parameter (we denoted the parameter by µ as the standard choice; λ is already
in use for the smoothing penalty parameter).

E(yt) = Var(yt) = µt (4.4)

As mentioned before, this assumption of nominal dispersion is relatively
strong. Regularly, one observes overdispersion in practical applications. Over-
dispersion is defined as E(yt) = µt < Var(yt). This case, where the variance
exceeds the mean, can arise for various reasons [22]:

• if the rate µt is not constant within a chosen time unit t (time dependence
in the rate)

• if the number of events in a time-interval depends on the number of pre-
vious events (contagion).10

• in the case of unobserved heterogeneity, i.e. there are covariates not entered
into the model which affect the number of counts.

All of them are likely for our analysis of death count data — especially un-
observed heterogeneity. We can certainly expect two sources of unobserved

9 In the case of smoothing with a polynomial, it can not be excluded that some
values are estimated at the boundaries which do not make sense. For example, if
a quadratic curve is used for smoothing, the fitted line points on both ends go
either up or down although it is possible that the resulting values do not have
any theoretical meaning (e.g. lifetimes smaller than zero).

10 It should be noted that already Greenwood and Yule stated in 1929 [133, p. 276]
“the problem of the distribution arising when the chance of a happening is affected
by antecedent success or failure”.



102 4 Seasonal Analysis of Death Counts in the United States

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 0
.0

1

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
00

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
00

00

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
e+

06

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
e+

08

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
e+

10

1
10

20
30

40
50

60
70

80
90

10
0

020004000
L
am

bd
a:

 1
e+

12

1
10

20
30

40
50

60
70

80
90

10
0

020004000

L
am

bd
a:

 1
e+

14

Fig. 4.6. The Impact of Changing λ-Parameters on the Smoothness of the Curve
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heterogeneity in our data: one is due to the fact that the month of death is
only a proxy-variable for the actual factors (e.g. temperature) which mod-
ulate the expected number of deaths µt seasonally. There is individual but
unobserved heterogeneity in the risk of death for specific months across years.
Secondly, even if we restrict the analysis to one sex, narrow age-groups, . . . ,
people in these groups are heterogeneous with respect to other characteristics
not included in the analysis.

Although we do not know what the actual reason of overdispersion is, there
is a way to control for it. The typical approach still follows the suggestion of
Greendwood and Yule [133] of assuming that the data follow a Poisson distri-
bution, “but there is gamma-distributed unobserved individuals heterogeneity
reflecting the fact that the true mean is not perfectly observed” [41, p. 71].
This modeling of a random effect for the mean with a gamma distribution
leads to the Negative Binomial Distribution for the count [41, 160, 292].

The Negative Binomial Distribution is closely related to the Poisson Dis-
tribution as the following tabulation shows:

Distribution Expected Variance
Value

Poisson µt µt

Negative Binomial µt µt + µ2
t

θ

The estimator for the expected value remains the same: µt. Using this
parameterization of the variance as shown by Venables and Ripley [389], we
can easily recognize that the Negative Binomial distribution depends simply
on one more parameter called θ. One could argue that the Negative Binomial
Distribution is a generalization of the Poisson distribution by relaxing the
term for the variance. We can model the Poisson case of nominal dispersion
by letting θ → ∞. The other extreme of large overdispersion can be modelled
by letting θ → 0.

The problem that arises is now: which θ-value is to be chosen, as this
parameter has to be entered into our model? The solution is found in the
properties of the so-called Pearson Residuals in the Generalized Linear Model.
They are defined as [see 249, p. 37]:

rP =
y − µ

√
V(µ)

and in our case and notation: rPt =
yt − µ̂t√
µ̂t + µ̂t

θλ

,

where yt denotes the number of deaths at time t (for the analysis by period),
µ̂t represents the estimated value at time t and Var is the estimated variance.
This standardization of the raw residuals (yt−µ̂t) results for an optimal model
in large samples in E(rPt) = 0 and Var(rPt) = 1 [41, p. 141].

Our strategy for choosing the optimal model proceeds in the following
steps.
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1. We assume a grid of possible overdispersion parameters θ.
2. For each given θ:

• we estimated all possible models with the given grid of all λ-per-
mutations. In the simplest case when L = 1 in Equation 4.1, three
separate λs were estimated.11

• we estimated the AIC from all models estimated in the previous step
and chose the one with the minimum AIC value.

3. We iterated the previous step for all values of θ.12

4. The outcome of the previous step was one “conditional optimal model”
for each given θ. Then, we calculated the Pearson Residuals for these
“conditional optimal models”. The one model where the variance of the
Pearson Residuals was closest to 1 was then chosen to be the optimal
model.13

Using simulated data, we compared our final model which incorporates
overdispersion with a model which assumed data following a poisson distribu-
tion. This approach has the advantage that we know the various components
that are entered into the model and can therefore check whether the two de-
composition approaches return the same components we have entered into our
simulated data. Figure 4.7 shows such a simulated example in a 3 × 4 panel.
The left column displays the simulated data. The trend component (Figure
4.7 d) has been constructed by using a third-order polynomial. The seasonal
component is linearly increasing (Fig. 4.7 g). We assumed a value of 10 for
θ in the Negative Binomial Distribution which results in high overdispersion.
This is reflected in the residuals as shown in Figure 4.7 j. Apart from the
linear increase in the seasonal component, this model is equivalent to Model
VII in Chapter 3 presented on page 78.

The middle column represents the optimal model, which has been esti-
mated using our approach which incorporates unobserved heterogeneity. Fig-
ure 4.7 b shows the entered time-series which is equivalent to Figure 4.7 a.
It can be clearly seen that the extraction of the trend (Fig. 4.7 e) and of the
seasonal component (Fig. 4.7 h) mirrors the input data almost perfectly. As
demanded from our model, the variance of the Pearson residuals should be 1
for the optimal model. Figure 4.7 k shows that our estimation is reasonably
close enough with a value of 1.04. The right column exemplifies a mis-specified
model. Although we used a Negative Binomial Model in the middle column

11 If we had given 5 values for λTrend which estimates the trend function f(t), and
also 5 values each for the penalty coefficient for the seasonal functions f1l(t) and
f1l(t), we would have had to estimate 5 × 5 × 5 = 125 models.

12 If we had also given 5 possible values for θ, 125 × 5 = 625 models would be
required to be estimated.

13 If the variance of the Pearson Residuals was not close enough to 1, we started
again with step 1 with an increased grid. “Close enough to 1” for the variance of
the Pearson Residuals was defined as: 0.99 < Var(rPt) < 1.01.
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Fig. 4.7. Simulated Data, “Optimal” Model and a Mis-specified Model

as well, we have chosen a value for θ (= 9000), which approximates a Pois-
son Distribution. Without taking unobserved heterogeneity into account our
model is helpless in estimating the trend (Fig. 4.7 f) and the seasonal com-
ponent (Fig. 4.7 i). Not surprisingly, the variance of the Pearson Residuals in
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the mis-specified model (Fig. 4.7 l) is far too high (21.282) for an expected
value of 1.
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Fig. 4.8. Seasonal Component from Figure 4.7 and Its Amplitude

Based on this simulation study,14 we concluded that our approach meets
our requirements that an appropriate method should be able to work with
overdispersed data having a flexible trend and a changing seasonal component.

The following section presents the results of our analysis for which we used
the decomposition method outlined here. We are, however, only interested in
a small part of the three components: the change in the amplitude of the
seasonality over time (or age). This corresponds in mathematical notation
to the smooth amplitude-modifying functions of the seasonal components in
Equation 4.1 (page 96) [118]:

al(t) =
(
f1l(t)2 + f2l(t)2

) 1
2 (4.5)

We use the resulting function al(t) from Equation 4.5 and plot eal(t). Figure
4.8 explains this graphically. In the left panel our extracted seasonal compo-
nent for an optimal parameter selection from Figure 4.7h is displayed. The
difference between the left and the right panel is that in the latter we added
the amplitude over time(eal(t)) of the seasonal fluctuations using a bold line.

14 Of course, more simulation studies have been conducted. The one presented here
should only serve as an example.
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This line is used as indicator of the change in seasonality over time or age in
the subsequent sections. A value of 1 corresponds, thus, to the case when no
seasonality is present. These seasonality values should not be confused with
the exponentiated regression coefficients known from event-history models and
understood as relative risks. Values apart from 1 have no direct interpretation.

4.5 Results & Discussion

4.5.1 Seasonality by Period & Cause of Death

All Cause Mortality

Figure 4.9 shows the change in the amplitude for seasonality in deaths from
all causes by 10-year-age-groups for the whole observation period from Jan-
uary 1959 until December 1998. The left panel illustrates results for women,
whereas the right panel deals with men. For both sexes we see the same general
trends: the older the people (=the darker the lines), the higher is the seasonal
amplitude. Changes over age will be examined in subsequent parts of this sec-
tion. Right now the focus is on changes over time. What we discover is some
preliminary support for Feinstein’s finding: Younger age-groups seem to have
a constant or slightly decreasing trend as indicated by the dotted and dashed
gray lines — especially for men. People who died at an age above 80 (dotted,
dashed and solid lines), however, have to suffer from higher fluctuations in
seasonality towards the end of the observation period.

With the progress made in survival chances — especially for older people
— we would have suspected that people are better able to withstand envi-
ronmental stress in recent times. A solution for this surprising finding is not
straightforward. One has to keep in mind that “Seasonality for All Cause
Mortality over Time, by Age-Group” is an aggregated outcome over several
variables. Between 1959 and 1998 mean age at death, measured by e0, rose
from 73.24 years to 79.31 years for women (♂ 1959: 66.80 years; 1998: 73.53
years) in the United States [166]. Consequently, also the distribution of deaths
within one 10-year-age-group shifted upwards. Among octogenarians, for ex-
ample, the arithmetic mean for age at death increased from 83.68 years to
84.01 years for men (♀ 1959: 83.94 years; 1998: 84.54 years). This composi-
tional effect might blur the “true” effect of changes in seasonality over time.
We checked this problem by estimating seasonality for all cause mortality over
time by single ages. The results (not shown here) resembled our findings for
10 year-age-groups: at least since the late 1970s, seasonalities are increasing
for the elderly.

Selected Causes of Death

After ruling out the impact of the age composition, we decomposed the ag-
gregated picture into selected causes of death and analyzed them separately
for women and men by age-group as shown in Figure 4.10.
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Fig. 4.9. Seasonality of All Cause Mortality over Time by Sex and Age-Group

Deaths from cardiovascular diseases are shown in the upper left panel for
women and in the upper right panel for men. As this was and still is the
leading group of cause of death, the fact that the two diagrams resemble the
results for all cause mortality rather closely is not too surprising. Cerebrovas-
cular diseases, as illustrated in the two panels in the middle row, are similar
to the previous pictures for deaths from all causes as well as from cardiovas-
cular diseases. The increasing trend for the elderly is even more obvious for
this cause of death category. Apart from women who have died between 50
and 59 years of age from that cause (dotted gray lines), all seasonalities are
increasing at least since the middle of the 1970s.15

If data problems can be excluded, there are always two strains of explanation
which can be referred to when interpreting changes in populations [383]. First,
there is a real difference in the variable of interest (seasonal susceptibility).
In our context, this explanation would imply that people have become more
susceptible to environmental stress over the years. One has to be careful with
this interpretation, though: by looking at the changes in the amplitude we
are using a relative measurement. An increase in the amplitude can either be

15 The dashed gray line on the left, denoting deaths of women aged 60-69 years,
represents an outlier. So far, it has been impossible to track down the source for
this problem since several checks have been already conducted such as plotting
the time series, looking for sudden changes in the number of deaths, etc. Also a
completely new approach for estimation resulted in the same outcome.
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caused by a real increase in winter mortality or by a decrease in winter mortal-
ity over time with decreases in summer mortality at an even faster pace. The
results would be the same: a larger seasonal amplitude in deaths/mortality
by the end of the observation period than in the beginning. This conjecture
finds support in the article of Seretakis et al. [340], who also found a decrease
in deaths from coronary heart disease until the 1970s followed by a slight
increase: “If the reversal is real, then it could reflect the increase in use of air-
conditioning, which would have blunted the effects of occasional heat waves
on coronary mortality” [340, p. 1014].
Secondly, however, there is the possibility that the change is influenced by a
compositional difference. In the context of seasonal mortality fluctuations, it
is possible that current progress against old-age mortality has the side-effect
that nowadays even frail people can become relatively old. While in the past,
frail individuals died early and left a relatively robust cohort of survivors who
were coping well with environmental hazards in winter, frail people today may
become older and are more susceptible in winter. This explanation could be,
however, only applied to people at relatively advanced ages.

Not all causes of death show the same pattern over time. The two panels on
the bottom of Figure 4.10 contain the development of seasonality over time for
respiratory diseases. For both sexes we observe a decline in seasonality. While
the decrease is almost linear for women at advanced ages, men’s and “younger”
women’s seasonality shrank until the late 1970’s, and has stalled since. Please
note the different scale on the y-axis in comparison to cerebro- and cardio-
vascular diseases: seasonality for respiratory diseases was much higher in the
past and still is. Although this gap has become smaller, the amplitudes in
seasonal death fluctuations from respiratory diseases remain higher in com-
parable age-groups.
In univariate analysis of time-series it is always difficult to determine causal
influences of external variables. It is, however, quite likely that improvements
in housing conditions played a major part. While in the US in 1960 only half
of all households were heated by gas or electricity, this proportion reached 82
percent in 1990 [372]. With these improved chances to heat the house prop-
erly, chances are decreasing for people to “catch a cold”. The different pattern
for women and men cannot be explained by this, though.

4.5.2 Seasonality by Age & Cause of Death

Of prime interest for demographers are not only death patterns for women
and men over time but — maybe even more important — with age. Previous
articles state that seasonality is increasing with age. However, the data used
in many studies appear to be problematic [cf. 302, p. 199]: “In several stud-
ies, no distinction by age was made at all [13, 21, 319, 367]. If the factor age
was taken into account, the highest included age or the beginning of the last,
open-ended, age category was chosen at an age after which most deaths in a
population occur [37, 62, 76, 97, 98, 164, 169, 188, 253, 369]. The oldest people
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in the “Eurowinter”-study, for example, were 74 years old. Bull and Morton
[37] merely made a binary distinction: younger than 60 years; 60 years and
older. Thus, results from these studies may simplify or blur the relationship
between age and seasonal fluctuations in mortality ” [302, p. 199]. So far,
there are only a few studies that have investigated seasonality in mortality or
deaths into very high ages [251, 268, 302]. The highest ages that have been
analyzed were centenarians and supercentenarians (110 years and older) in
the study of Robine and Vaupel [309]. Regardless whether they calculated
seasonality indices and ratios or log-odds, the typical outcome were higher
seasonal fluctuations by the end of the lifespan than at middle ages. Even su-
percentenarians show higher excess winter mortality than centenarians, which
indicates that also at those ages, the resistance against environmental hazards
is decreasing [309].

All Cause Mortality

Figure 4.11 gives a first impression how seasonality in deaths changes with
age. The left panel shows seasonality for deaths from all causes for women
where each solid line indicates a 10-year-calendar period. The right panel
shows results from the respective analysis for men.
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The general trend for both sexes shows — as expected — higher seasonality
with age. The increase is far from linear. We could make a distinction for
women as well as for men by grouping the first three decades together (dotted
gray: 1959–68; solid gray: 1969–78; dotted black: 1979-88) and contrast them
with the last 10 years (1989–98 in solid black): Until age 80 the increase
is relatively moderate. Then, at the highest ages, seasonality bends sharply
upwards. The black solid line in both panels represents changes with age for
the most recent decade in the analysis (1989–98). One can differentiate three
stages: Compared to previous decades, seasonality is relatively low at age 50
and increases until age 60 where it is roughly on level terms. Between 60 and
75/80 years seasonality remains relatively constant. After age 80, seasonality
in deaths from all causes is increasing, and shows higher values than in the
past for the same ages.

Selected Causes of Death

To gain further insights, we decomposed the pattern for all causes again into
the three major seasonal diseases. The results are shown in Figure 4.12 for
cardiovascular (upper left & upper right panel), cerebrovascular (middle left
& middle right panel), and respiratory diseases (lower left & right panel).
As we have seen previously for the analysis by calendar-time, seasonality of

cardiovascular diseases matches seasonality from all causes almost perfectly.
Especially for men during the most recent decade analyzed (1989–98), we
recognize again the development of seasonality in three stages. While the
age-range 60–65 marks also here the bending point from an increase in sea-
sonality to a constant pattern, the age when the slope becomes steeper again
is shifted to the right. Seasonality for cardiovascular deaths shows a strong up-
ward tendency after ages 90–95. This three-stage-process is also repeated for
cerebrovascular diseases with only slightly changing ages as turning-points. I
would like to stress that the puzzling pattern is not the outcome of our model.
If we had chosen a polynomial for our estimation procedure those unwanted
boundary effects could have been implicit in the model as mentioned briefly
in the end of Section 4.4.2. Using the P -Spline approach, though, has the
advantage that “[b]oundary effects do not occur if the domain of the data is
properly specified” [87, p. 98]. Excluding, thus, data problems, we propose an
interaction between “real” changes in susceptibility and compositional changes
due to mortality selection. Following the mortality model proposed by Robine
[310], increasing mortality reflects vanishing resistance towards environmental
hazards. The same should hold for seasonality: with increasing age, seasonal
fluctuations should become larger as the human body becomes more and more
susceptible to the detrimental effects of winter. At the same time, we observe
a selection effect in mortality: “All populations are heterogeneous. [. . . ] Some
individuals are frailer than others, innately or because of acquired weaknesses.
The frail tend to suffer high mortality, leaving a select subset of survivors. [. . . ]
As a result of compositional change, death rates increase more slowly with age
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than they would in a homogeneous population.” [384, p. 858]. This might also
have a decreasing effect on the magnitude of seasonality in deaths. In our
case we can argue that this selection effect is relatively weak before age 65,
as not many people have died out of the population. At subsequent ages the
push-factor for the seasonal amplitude (higher susceptibility) is balanced out
by the pull-factor (mortality selection). This effect can be easily simulated
following the concepts of Vaupel and Yashin [386]. Figure 4.13 shows one of
the “ruses” selection effects can play: Our population consists simply of two
sub-populations. The frail sub-population is getting seasonally more suscep-
tible in a linear fashion (dotted, gray line). The more robust sub-population
— as shown by the dashed, gray line — is relatively immune to stressful en-
vironmental conditions during winter into their late 80’s. During the last few
years of their lives, seasonality increases at a faster pace. We do not know who
belongs to the robust group and who to the frail group. What we observe is
the population level illustrated by the solid, black line.16

By this simple simulation with two subpopulations we can easily see that
our observed outcome in Figures 4.11 and 4.12(upper 4 panels) could be gen-
erated by such a process. Further support can be drawn from these graphs
by looking at the development over calendar time: the depressing impact of
the selection effect is getting smaller over time. This could reflect the fact
that in the past there were only relatively robust survivors in those higher
age-groups, whereas nowadays people are reaching those ages who would not
have been able to do so only 20 years earlier.

The lower two panels in Figure 4.12 show the change in seasonality with
age for deaths from respiratory deaths. For this cause of death, we have not
discovered a pattern as for the two previous causes. After a slight decrease for
women as well as for men until age 65, seasonality increases steadily with age.
The two panels also give support for the previous finding in Figure 4.10 (page
109): Over the course of the observation period, seasonal fluctuations have
become smaller in more recent decades as indicated by the four plotted lines.
Thus, improvements in general living conditions seemed to help in reducing
the annual cold-related death toll due to infections of the respiratory tract
— especially for the elderly. Our results indicate, for example, that seasonal
fluctuations were smaller during the last observed time period (1989–1998) for
female as well as for male nonagenarians than for anyone during the period
1959–1968.

16 The data were simulated as follows: N frail
50 = 5×N robust

50 ; qfrail
x = 0.06+0.0008×age,

qrobust
x =

(
0.06 + 0.0002 × age , if age ≤ 87.5

(0.06 + 0.0002 × 87.5) + 0.0018 × age , else.
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4.5.3 Seasonality by Region & Age

Figure 4.14 shows the development of seasonal mortality by age and region in
the US for women and men for the last observed decade, 1989–1998. Because
no reliable estimates turned out for Alaska and Hawaii, the two states have
been omitted. No differences can actually be detected between the seven re-
maining regions. Also the possible mis-specification of some states from the
group “Mountain” did not result in an estimation which differs from the other
categories. One can see the aforementioned (cf. Figures 4.11 and 4.12) non-
linear increase of seasonality with age. All regions follow this pattern rather
closely. These results are unexpected: Previous studies usually indicated that
regions with a warm or moderate climate (e.g. the UK, Ireland, Portugal,
Spain, Greece) tend to have higher seasonal fluctuations in mortality and
deaths than colder regions such as Russia, Canada or Scandinavian countries
[97, 98, 135, 147, 252]. This has usually been attributed to the fact that people
in colder regions have higher indoor temperatures and avoid exposure to out-
door cold. If those findings could have been converted to the United States,
one would assume that the regions “South Atlantic” and “East/West South
Central” should show higher seasonality than other regions. According to the
“Köppen Climate Classification”, all states covered in these two regions be-
long to the “Humid Subtropical Climate”. Surprisingly, they do not deviate in



116 4 Seasonal Analysis of Death Counts in the United States

Women

Age

1.
00

1.
05

1.
10

1.
15

1.
20

50 60 70 80 90 100

Men

Age

1.
00

1.
05

1.
10

1.
15

1.
20

50 60 70 80 90 100

New England
Middle Atlantic
Midwest
South Atlantic
E/W South Central
Mountain
Pacific

Fig. 4.14. Seasonality of All Cause Mortality by Age, Sex and Region, 1989–1998

any way from the other regions in the United States which are less humid and
cooler. This underlines that social and cultural factors are important forces
in shaping the seasonal pattern of deaths, as climate appears to be negligi-
ble. It has to be mentioned, though, that “region” in the United States is
not only correlated with climate but also with socio-economic status and life
expectancy. Residents in New England spent on average more time in school
than women and men in the regions “South Atlantic” or “South Central”.17

At the same time, life expectancy is also lower in those regions [290]. This
could suggest also an alternative explanation: there are two opposing forces
which cancel each other out. On the one hand, the regional differences do ex-
ist as in Europe between warm and cold regions. That would imply that the
southern states show higher seasonality than the states in the northeast. On
the other hand, this differential is counteracted by a selection effect. Mortality
is higher in the south of the United States. Due to these higher death rates,
frail people tend to die at younger ages than in the North, which should have
a rather depressing effect on seasonality. We consider the first explanation
(no regional differences) to be more likely than the balanced outcome of two
opposing forces. If the latter were true, it would require a social gradient by
education: Due to a selection effect, people with low education should also

17 Based on our own calculations using the number of years spent in school of de-
ceased women and men. The results were similar for all ages above 50 as well as
for people being 80 years old.
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show lower amplitudes in their mortality fluctuations. As will be shown later
in this chapter (page 118), a social gradient is observable — with the oppo-
site direction, though: people with an academic degree have generally lower
seasonality than people with only a few years spent in formal education.

4.5.4 Seasonality by Region & Period
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Fig. 4.15. Seasonality of All Cause Mortality by Region and Sex, 1959–1998

Figure 4.15 portrays how seasonal death fluctuations have changed over
time in various regions of the United States. For reasons of clarity, only results
for the age-group 80-89 years have been plotted. Due to numerical optimiza-
tion problems,18 it was possible to display only six regions for men (missing:
“Alaska”, “Mountain” and “East/West South Central”) and seven for women
(missing: “Alaska” and “East/West South Central”). Despite this unfortunate
loss of information, several interesting features can be observed: The decrease
in seasonality discovered in Figure 4.9 (page 108) did not occur in the US as a
whole. Rather, three regions were responsible for this development for women
and for men likewise: Middle Atlantic, South Atlantic and the Midwest. They

18 While none of the λ-parameters reached one of their limits, no values for θ were
possible to be input to lower the variance of the Pearson residuals anywhere close
to 1.
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showed decreasing seasonality for the first decade observed. All other regions
already showed an increase during that period. With the exception of Hawaii
(thick, solid, black line) trends have converged for the remaining regions since
the late 1960s. This suggests that the existing climatic differences have become
less and less relevant over time, as social circumstances and living conditions
have become more alike in all regions. Hawaii represents an outlier — espe-
cially for women. One could either argue that seasonality in Hawaii is smaller
than in other regions because of the predominant tropical climate. There,
less precautions are required to avoid cold-related mortality during certain
seasons as the temperature varies there less than in other (climatic) regions
of the United States. It could also be, however, a statistical artifact due to
the small number of deaths in Hawaii compared to the other analyzed re-
gions. This latter hypothesis receives support from the study by Seto et al.
[341] . They found differences of 22% between winter and summer mortality
from coronary artery disease mortality . This shows that seasonal mortality
in Hawaii does not differ from the United States as a whole, since we found
roughly the same results in our description of winter/summer differences for
cardiovascular diseases (Winter/Summer Ratio 1.206, cf. Table 4.2 on page
89).

4.5.5 Seasonality by Education & Age

Educational level serves as an indicator for socioeconomic status. How this
variable affects seasonal fluctuations in deaths over age for women and men
during the period 1989–98 is portrayed in Figure 4.16. For women and men
alike, seasonal fluctuations are the highest for the category “not stated” given
by the thin, dashed gray line. Apart from that residual category, a clear social
gradient in seasonal mortality is observable until age 90. The biggest differ-
ence is to be seen between people who have earned a college degree or more
(black solid line) and who have received no formal education at all (gray solid
line). Persons who belong to the highest educational group have the lowest
seasonal amplitude and vice versa. Again, it is remarkable how little women
and men differ from each other in terms of seasonal fluctuations. The social
gradient diminishes with age and vanishes completely for both sexes at about
age 90. The path to convergence is interesting: People with highest completed
education show a relatively steep slope whereas the pattern of people without
any formal education is rather constant over time. One could therefore argue
that people with relatively poor education face seasonal fluctuations in deaths
throughout large parts of their adult lives which highly educated people only
have to face at very advanced ages. Our estimates show that education does
not matter for seasonal mortality when people are 90 years old. It is hard
to make any inferences about the last years in our age span until the 100th

birthday. It seems as if people with the least formal education (“elementary
school or less” depicted in the gray , solid line) do not become more suscepti-
ble to stressful environmental living conditions. Whether a direct effect or an
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indirect (compositional) effect, or both, cause this stationary pattern is hard
to answer. A direct effect would assume that people with low education are so
weak in general that they die regardless of the current season. Contrastingly,
a selection effect is also imaginable: As people with lower education tend to
die at younger ages [374], only a highly selected subgroup is still alive at ages
above 90. It is possible, that those people are especially strong in withstand-
ing environmental stress during winter. This latter hypothesis receives further
support when the development after age 90 is investigated for the other edu-
cational groups. A social gradient is still observable but the other way round.
However, the ones facing higher seasonal fluctuations are highly educated peo-
ple, whereas people with less education display smaller seasonal amplitudes.
This pattern is possibly a reflection of a compositional effect as people with
higher education are less selected than people with lower education.
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1989–1998

We investigated the influence of socio-economic status on seasonal mor-
tality further by analyzing not only mortality from all causes but also from
selected causes. The results for cardiovascular mortality are shown in the up-
per two panels of Figure 4.17, respiratory mortality is plotted in the lower
two panels. Women’s results are in the left column, men’s seasonal fluctu-
ations by age are displayed on the right. In all four panels we detect the
aforementioned (Fig. 4.16) social gradient: The more years spent in formal
education, the lower the seasonal fluctuations. One important difference is,
though, that the relative differences for respiratory diseases are smaller than
for cardiovascular diseases. Both causes of death are known to have a social
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gradient [69, 210]. For mortality in general, however, the extent of the slope is
larger for respiratory diseases than for cardiovascular diseases. This suggests
that an inverse relationship of the social gradient exists across causes of death
between general susceptibility and seasonal susceptibility.
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Fig. 4.17. Seasonality of Mortality from Cardiovascular and Respiratory Diseases
by Sex and Educational Status, 1959–1998

4.5.6 Seasonality by Marital Status & Age

Seasonal differences in deaths by marital status are shown in Figure 4.18 by
sex and age. Although the numbers of deaths by marital status vary con-
siderably by marital status for women and men (cf. Table 4.4, page 92), the
estimates for both sexes are again very similar. While the variable “education”
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provided a clearly visible social gradient, “marital status” does not show such
a clear-cut picture. Nevertheless, married people appear to have lower am-
plitudes in seasonal mortality across their life-course than widowed or never
married people. This supports the idea of a protective effect of marriage also
for seasonal mortality. Two possible causal pathways are: Married people can
share their financial resources and are therefore able to have higher quality
in housing and access to better medical care. It could also be the presence
of another person in the household who is able to provide help in an emer-
gency (e.g. calling an ambulance in case of a possible stroke). The lack of
these factors is possibly reflected in the higher seasonality of never married
and widowed people. Most likely these people live alone and don’t have ac-
cess to two sources of income. From mortality research in general it is known
that divorced people are showing higher death rates than married people. In
the case of seasonality, however, they are rather indistinguishable from mar-
ried women and men. One could hypothesize for the US, therefore, that the
presence of a partner is less important than the access to economic resources:
divorced people are also likely to live alone. If this were decisive they should
show similar seasonality as never married and widowed people. What makes
them different is that they don’t lose their financial resources.
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We note indications for a selection effect. At about age 90, the amplitudes
in seasonality are converging among the analyzed marital status groups, sug-
gesting even a crossover. This converging trend is also observed in studies
on mortality in general [e.g. 125]. It can be argued that people who were
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never married have typically a higher mortality rate throughout their life.
Consequently, only a selected subgroup survives to those high ages, while
the married are still more heterogenous in their composition with respect to
frailty.

4.6 Summary

Seasonal fluctuations in deaths in the United States between 1959 and 1998
have been analyzed in this chapter. While models using information on the
actual events (=deaths) and on the exposed population are preferable, some-
times only data on deaths are available — without any information on the
individuals at risk. This analysis represents such an approach relying only
on death counts. These data are derived from annual Public-Use-Files from
the Centers for Disease Control and Prevention (CDC) in the United States.
The time span covers the period 1959–98. Although deaths at all ages are
included, our analysis restricts itself to the age-range 50–99 years. Almost 80
Mio. individuals died during that period in the given ages. They formed the
basis of our analysis.

We developed a new method specifically designed to meet our needs in
the presence of overdispersed count data. This analysis represents the first
extensive application of this new method. We used a log-linear model where
additive terms for the trend (one term) and for the season (at least two terms)
were related to the mean of the observed deaths at a certain time or age via a
log-link. These components are allowed to vary smoothly over time (or age).
We fit this varying-coefficient model by using P -Splines which are the well-
known B-Splines with a penalty on their respective regression coefficients.
Thus, we did not impose any parametric form on either the trend or on the
seasonal component but rather estimated changes over time (or age) data-
driven. It has been shown with simulated data, that our new approach fits
data with the given structure very well and much better than the standard
methods.

Our analysis over calendar-time resulted in a slightly upward moving trend
since the early 1970s for seasonal mortality from all causes as well as from
cardiovascular and cerebrovascular diseases. This could reflect on the one
hand that the differences between summer and winter mortality have become
bigger on the individual level. The introduction of air conditioning and the
widespread usage of central heating can serve as an explanation. It would im-
ply that the former decreased summer mortality faster than the latter shrunk
cold-related mortality. On the other hand, one can argue that compositional
changes caused this increase over time. Because of the progress made in sur-
vival in general, relatively frail people attain high ages who would have died
in the past at younger ages. They are most likely the ones who are more sus-
ceptible. In the case of respiratory disease we observed a decrease over time
which could be attributed to the spread of central heating.
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Seasonality of deaths is increasing with age. This increase is, however,
neither linear nor monotonous. We observed, rather, a development in three
stages: After an initial increase between ages 50 to 60/65, seasonality remains
relatively constant for about twenty years after which they start increasing
again. This puzzling pattern — especially for cerebrovascular diseases — may
hint at an interaction between “real” changes in susceptibility (=increasing
trend) and compositional changes due to mortality selection (=depressing
effect).

In European countries large variations in seasonality have been observed
between countries with warm, moderate, and cold climate. This pattern has
not been reflected in our regional analysis of the US. The examination by
age showed the expected trajectory of an increase as people are getting older.
Nevertheless, the slope does not differ if people are living in a rather warm
or cold state. Our analysis over period shows a converging trend over time
which is probably caused by a tendency towards similar social circumstances
and living conditions in all regions of the United States.

Seasonality in deaths by educational status has not been investigated pre-
viously. Our decomposition approach resulted in a clear social gradient. The
lower the educational status, the larger are the differences between winter and
summer. This effect can be observed until about age 90 when all educational
groups display more or less the same seasonality. Beyond age 90, we observed
a crossover which might have been caused by a selection effect: while frail
people with low education are most likely already dead, frail people with a
college degree are still alive and are more likely to die in winter than the
rather healthy, homogeneous group with lower education.

Our explorative approach into the question whether marital status is as
important for seasonal mortality as for mortality in general was not as suc-
cessful as the investigation into educational status. Married women and men
appear to have lowest seasonal fluctuations over age, while never married and
widowed people have higher seasonality. Unfortunately, the trajectories of the
four analyzed marital status groups are partly overlapping. This implies that
a straightforward distinction as for mortality in general is not possible.

This analysis of seasonality in deaths in the United States found sup-
port for the surprising finding of previous studies of increasing seasonality
over time. Cardiovascular and cerebrovascular diseases follow this trend rather
closely, whereas respiratory diseases showed a decreasing trend. Our “three-
stage-increase” of seasonality with age showed that a statement like “season-
ality increases with age” is too simple. The most important findings from our
study are:

• We found no differences in seasonality by region — neither over time nor
by age — as we could have expected from previous literature on Europe.
This underlines the importance of social factors compared to climate.

• In a pilot approach of analyzing the importance of education on seasonal
mortality, we detected a strong social gradient. The higher the educational



124 4 Seasonal Analysis of Death Counts in the United States

status, the lower is the seasonal fluctuation in death for most of the adult
life.

• The most important finding is probably the lack of differences of seasonal
fluctuations in seasonal mortality for women and men. While women face
throughout their entire life course lower mortality than men, the relative
differences between winter and summer seem to be negligible.


